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Abstract

We look at programming with inductive and co-inductive datatypes, which are
inspired theoretically by initial algebras and final co-algebras, respectively. A
predicative calculus which incorporates these datatypes as primitive constructs
is presented. This calculus allows reduction sequences which are significantly
more efficient for two dual classes of common programs than do previous calculi
using similar primitives. Several techniques for programming in this calculus
are illustrated with numerous examples. A short survey of related work is also
included.
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1 Introduction
This paper explores programming with inductive and co-inductive datatypes.
Type expressions using the p type constructor represent finitely representable
inductive types (e.g., natural numbers, lists), while those using v represent
countably infinite or potentially infinite co-inductive types (e.g., potentially infi-
nite streams, infinite depth binary trees). Each (co-)inductive type is associated
with operators to build and manipulate terms of these types.

Encodings of such types in previous calculi have suffered from efficiency
problems which prevent them from being as useful in practice as desired. The
typical example is that of the predecessor function on the common Church nu-
meral encoding in F2 , which requires linear-time, as shown by Parigot [241. Most
encodings in other calculi are closely related and suffer the same problem. Our
calculus allows similar encodings of data types, but the calculus offers exten-
sions admitting definitions of constant-time pred and cdr, and related efficiency
improvements.

Previous work has concentrated on inductive types. Very few examples of
co-inductive functions have been given, so that their usefulness in practice is in
question. This paper explores the duality of inductive and co-inductive types
and presents a number of examples to attempt to show the usefulness of co-
inductive types.

Induction and co-induction as presented here are obviously less powerful
than recursion, as they guarantee termination. So, an essential question is
whether these concepts are powerful enough for practical programming. This is
the motivation for our extensive look at examples within the calculus.

These (co-)inductive type constructors are inspired by initial algebras and
final co-algebras [8, 9, 19] of category theory. Some examples of this paper use
simple commuting diagrams to help explain the definition of some functions in
the calculus. A basic knowledge of category theory will be helpful, but not
necessary, to the reader.

A summary of this theoretical motivation is given in Section 2. The calculus
is introduced in section 3, with examples of inductive and co-inductive terms in
Sections 4 and 5. In Section 6, related work is discussed. The appendices give
additional details for interested readers.

2 Theoretical Inspiration

This section provides A theoretical motivation or inspiration for the calculus as
presented in Section 3. As such, it also serves as a beginning point for developing
a model for the calculus. More pragmatically, simple commuting diagrams lead
to methods for programming in the calculus.

Assume that there exists an appropriate category C of types1 , where arrows

'Some features of such a category m discussed in [2, 6].



represent functions from one type to another and composition is function com-
position. We then look at F-algebras, for functors F : C -. C. An F-algebra
is a pair (r, g) consisting of an object r : C and a map g : F(r) --+ r. An F-
homomorphism, an arrow in the category of F-algebras, is a C-arrow such that
the following diagram commutes.

F[r] F(h) _ F[r']

II
g fT

h

If (r, g) is an initial F-algebra, then there exists a unique h for any given choice
of (r', f). Labelling the initial F-algebra as (p(F),in{F}) and the unique h as
R{F}[r]f to emphasize their dependencies, we obtain the commuting diagram

F[p(F)] F(R{F}(r ' f) . F[r']

in{F} f

p(F) R{F}ir]f r'

When the above arguments are dualized, we obtain the final F-co-algebra
(z(F), out{F}) such that the following diagram commutes for any choice of

F[,rI F(G{F}[Vrf) F[v(F)]

f out(F}

- G{F}[r']f " v(F)
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The following theorems and corollaries are to establish motivation for some
of the equality judgments of the calculus. Proofs are given only for inductive
cases, as the co-inductive cases are analogous.

The first theorem is a-like and shows the main interaction of the induction
morphisms. The second gives q-like equalities.

Theorem 1 Principle of induction: (RI{F)}Iif) o inf{F) = f o F (R{ F)[r]f)
and of co-induction: out{ F} o (G{F}[Tlf) = F(G{F}[T]f) o f.

Proof- Follow from the commnutativity of the preceding diagrams.

Theorem 2 R{FJfp(F)]in{F} = 10F and G{F}[z1(F)]out{F} = IdU()

Proof: Follow from the initiality (finality) of the F-(co-)algebra and commu-
tativity. 0

Theorem 3 in{FJ and out{F} are isomorphisms.

Proof: We show that in{F} has left- and right-inverses. Consider the following
diagram, where both squares commute:

F~p(f)] -F(!) F[F~(F)] F(in{ F}) .F[p(F]

in{ F} F(in{ F}) in{F}

p(F) F~p(F)] -. {F} uF

By the definition of an algebra, ! f{F}[F~p(F)!IF(in{F}) is the unique
map such that

o in{ F} = F(in{F}) o F(!) = flin{ F} o

Since the inner squares commute, so does the outer rectangle. Then, by initiality,

in{ F} 0 -Idpi(F).

Furthermore,

!0 in{F) = F(in{F} o !)=F(Idp(f)) = IdF[(I5()J.

But these equations simply mean that Iis a left- and right-inverse of in{ fl,

and thus, that in{F} is an isomorphism. 03
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Corollary 1 There exist unique morphisms in-'{F} and out-'{F}. And
these inverses are expressible in terms of the other (co-)inductive morphisms
as R{ F}[F[p( F)]](F(in{ F})) and G{F} [F[v(F)]](F(out{F})), respectively.

Example 1 For F(X) = 1 + X, in{F} is the mapping [zero, succ]. Its in-
verse, in-'{F}, is related to the mappings zero? and pred. Details are found in
Example 11.

3 The Calculus AMM " '

The calculus is based upon a restricted version of AML [11]. The higher kinds
of that calculus are omitted to avoid complications that arise between type
constructor application and the positivity requirement of p and v2 . The explicit
set injection is also omitted, for readability. Thus, this calculus is called AMM."",
for "mini-AML with p and ". The choice of calculus for a base is not critical;
e.g., the Calculus of Constructions, F2, and variants of F2 have been used in
other work.

3.1 Syntax

Given denumerable sets of variables typevar and termvar, the calculus is defined
by

X E typevar
rE types X lI t ri x 2 1 +r2 1 r-- r' I /1(u) I v(u)

u E typecons3  AX.r s.t. -'Neg(X, r)

orE typeschemes r:: 1 0 x 0 2 1 Ol + 0'2 I -' I VX.O

x E termvar
t E terms x I * I (t , I w t I rw 2t I

inlrt I inr't I case(t,ti,t2 ) I
Ax :.t It t2 I AX.t I [r] I
in{u} I in-xf{u} I R{u}[r]t I

out{u} I out-'{u} I Gfu}[']t

rEcontexts @ Ir, ,v:a

where Neg(X, r) (Pos(X, r)) holds if X occurs "negatively" ("positively") in

2 The implications are discussed briefly in Section 8.
3 The weak notion of "type constructor" used here corresponds to a constructor of kind

Type -. Type. Also, g and v can be informally considered type constructors of kind (Type -

Type)- Type.
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Neg(X, X) = Neg(X, 1) = false
Neg(X, ri x 2) = Neg(X, ri + r2) = Neg(X, ri) V Neg(X, -2)
Neg(X, r -- ) = Pos(X,i-) V Neg(X, r)
Neg(X, p(AX.r)) = Neg(X, v(AX.r)) = false
Neg(X, p(AYr)) = Neg(X, Y(AY.r)) = (X 9 Y) A Neg(X, r), if X 0 Y

Pos(X, X) = tr'ue
Pos(X, 1) = false
Pos(X, ri X r2) = Pos(X, r, + r2) = Pos(X, i-,) V Pos(X, r2)

Pos(X, r -- r) = Neg(X, r) V Pos(X, r)
Pos(X, p(AX.r)) = Pos(X, "(AX.r)) = false
Pos(X, p(AY.r)) = Pos(X, v(AY.r)) = (X # Y) A Pos(X, r), if X 0 Y

and where contexts are taken to be sets, with the comma as the extension
operator.

The addition of the families of constants in - ' {u} and out-'i{u}, along with
the association reductions in Section 3.4, is a primary contribution of this paper.

Here, we find the notation p(AX.r) (and similarly, L(AX.r)) more conve-
nient, but it is equivalent to the more common notation pX.r.

3.2 Meta-notation

For readability, we make extensive use of notational definitions using the symbol
-. For example, Id" a Az : .z, t t a Au : 11 Also, after the first examples,
we omit type information when it is clear from context.

In the examples, we express desired properties of functions via equivalences.
Observational equivalence between terms is denoted by -5. As usual, t a5 t' iff
P[t] and P[t'] evaluate to the same value4 , for all contexts Pfl of type Bool.

Capture-avoiding substitution is denoted A[B/C]. Type constructor appli-
cation u r is shorthand for its fl-reduction, u["/X]

3.3 Type judgments

Type judgments of the form r I- t : o state that t is a term of type or.

r,t: i- t :a rc- * :1

r - ti : a'i i = 1,2 r - t : alx X 0'2 i=1,2

r i- (tI,t 2) Ol X Or2 r F- rit : ai

r - in' 2 t : UI + U2 r - inr't :cr + a2

4 See Section 3.4 for the definitions of evaluation and values.



r I-- t : at % 0-2 r I- ti : o-i --. a•  /= 1,2

r i- case(t,ti,t 2) :'

r,x :at- t : e r i- ti :o --+ ' ri-t 2 :a
r P- (Az : Wt) : y Z- or, r i- t, t2 :Or'

r -t :or r -tt vx.o-
r F AX.t VX.a r F t[r] ,[-/rx]

r F in{u} (u u(u)) -. p(u) r F out{u}: v(u) -. (u v(u))

r F in-'{u} : (u) -. (u p(u)) r F out-'{,u} : (u v(u)) -. v(u)

r-t : (u r) --+ r r-t:r--*ur -
r F R{u}[r]t : p(u) -e r r F G{u} [rt : r- v(u)

Type and type constructor equality is simply a-equality.5

3.4 Operational semantics

The values of the calculus are the closed terms of the form

v E values * I (vI, v2 ) I inlv I inev I Ax : o,.t I AX.t
in{u} I in{u}v J in-{u} I R{u}[r]v I

out{u} I out'u ut- 1{1u}v I G{u}[,r]v I G{u}[r],v v2

These are the values of the AML core, plus the "partially applied" (co-)inductive
forms.

The one-step evaluation function -+ is defined upon well-typed terms by
the following judgments. Its reflexive and transitive closure is denoted by --.

Although lazy products and co-products would also improve efficiency, we use
eager (co-)products and call-by-value which are sufficient for the desired effi-
ciency results of induction and co-induction.

t ---4 t2 -- t2 t-t' i = 1,2
(t1, t2) --.(ti, t2) (, t2) - (t, t') 7rt --- 7,t'

t -- t, t - - t,

inlt -. inlrt'  inrut inr'tl

5In particular, the calculus does not have the equality r I- ,(u) t u(p(u)) as found
in many object-oriented type systems using "recursive" types. Here, these two expressions
denote distinct, but isomorphic types, where inf{u} ad in- (u} are coercions.
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t - t,

case(t, t 1, t2) case(t', t 1, t2)

ti -4 4cae(v, t1, t2) ---- (v, t'i, t2)

t2 -' ---i+t

____~ v V _ _2) _s~v i t'2t

t --.t , t --- u, - t'-

infu}t ---,inJu}t' in-' fU}t in- f u}t '

t -t, t --+t
out{ui} -t out{u}t' out- ' u}t -. out- {U}t'

t -t, t -- ,
R{u}[r]t --- R{u}[l]t' G{u}[r]t -- G{u}[t]t'

case(inl v, V1, V2 ) -- V1 V caSe(inre, V1, V2 ) - V2 V

W (VI, V2) -- Vi

(A: 0'.t)v --. t[v/x] (AX.t)[u] --- t[u/X]

in-' {u}(in{u}v) --. v out{u}(out-{u}v) --4 v

R{u}[ll (in{u} 2) -- Vi({u}[Mu)][r] (R{u}[rlvl) V2)

out{Ju}(G{u}[r]v1 V2) -- {u}[r][V(u)] (G{',}[Tlv1) (vi V2)

These last t' . rules represent infinite families of reductions indexed by u, since
1 {u}[r ][Tr2] f t is meta-notation defined by induction on the structure of u as
below. 

6

Together, the type constructor u and $I{u}[ri][1"2] f t correspond to the
object (type) morphism and map (term) morphism of the functor 4 of Section
2. Since the latter is defined in terms of the former It is sufficient to index the
terms such as in{u} as such, rather than indexing by the functor as in category
theory.

The definition of {u}[rlI][r2] is

OThis definition is adapted in conjunction with Daniel Leivant and is a correction of the
analogous definitions in Hagino (8, 9] and Leivant [12].
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if u SAX.X, f t
if u~ AX.Y, X # Y, t

if u AX.1,

if U~Xr A X-7 ($AX-rri][ 2 1 f (VIt),'Z'{AX'ij}[r]f 2 1 f (r 2 )
if u A X.Ij + r2, case(t, Ax1 : ~[iX.n(Z{Xi}r]r]f a1),

-\- 2 :r2[ri/X].inrlb{AX.r}[ 1][r2] I f X))

if U AX-71' - '2 AX: TffT72/X].
'b{A\X-r2}[rj][72] f (t(I{AX.ri'}rx][7mI f ar))

if u AXqP(U') R{u'[Tl/XII[((u'T 2 /X])]
and Y fresh, (OX: U'Ti/X] P(U'(r2/X]).

inf u'[r2 IX]}

(${AX.u' Y}[Tl11tT21 f X)[P(U'[r2 /X])/Y])
t

if u =-AX.V(U') u[2/lf(,f/Xl

and Y fresh, (AX:VU[1X)

(4b({\X-U' Y}[Ti][T2]
f (outfu'[ri/X]}z))taL(ri[T/XI)/YI)

t

where the definition of Tfu}(n](1raJ f t is almost identical, except that 0Z and T
are interchanged:

if u AX.YX A Y,
if u AX.1,
if UE AX.71j X 772, (;IAX-7rfl(TlI(r2l f (T1 t),T{AX-r2}r 1 [ 2] f (72 t))
if u EAX.rij + r2, case(t, Ax,~ rj'[/X).in(4b{jAX.*1j}j[r][r 2 ) f zi),

AX2: rl[,r2/X].inrQlf{AX-72} [T] [Tr2]I f X))

if u \X'r( --+ r2' AX : 1 r1

I{jAX-r-j}(n][r2] f (t(${jAX-rj}[l][r2] f z,))

if u AX.pu(u') R{u'[1i2/X]}[p(u'[(ri/X])]
and Y fresh, (Ax:u[2X[~uiX

(5{A\X-U' Y}[Tu][r2] f Z)[P(U'[ri/X])/Y])
t

if u = AX.V(u') Glu'[ri/X}[i(u[T2/X])]
and Y fresh, (-\-:,VU[2X

(IAX-u' Y}[r1][r2]
f (outfu'[r2/X]}X))[V(U'(r2/X])/Y])

8



t

The expression $D{u}(r][r2] f t : (u "2) is well-defined when

0 f : r - r2,

* t: u rl, and

• X occurs only positively in u X, i.e., -,Neg(X, u X).

Intuitively, f is applied to the appropriate subterms of t, as syntactically directed
by the type constructor u. Similarly, ;F{u}[r][r 2] f t : (u rl) is well-defined when

" f : 7I - r2,

" t : u r, and

" X occurs only negatively in u X.

The reductions which allow the one-step cancellation of inverse constants
are the significant additions to previous work. In other papers, functions have
had to simulate these constants via Corollary 1. But, without these inverse
cancellation reductions, reduction sequences are significantly longer.

The operational semantics is type sound:

Theorem 4 If r -t : a and t -,. v, then r -v : o.

Proof Sketch: Each evaluation step is type consistent. 0

It also guarantees that evaluation terminates:

Conjecture 1 If - t : o, then there exists a unique value v such that t --L* v.

Proof Sketch: By the translation given in Appendix B, all terms can be
mapped to terms in F2 . The translation preserves reduction, i.e., t - u implies

k +--'F2 u. Since F2 is strongly normalizing, any evaluation sequence for AMMI"V
which respects the F?, translation and standard semantics must terminate. The
evaluatioi. function -- meets this requirement. 3

4 Inductive Types

Inductive types are those definable with the y type constructor. They represent
tree structures of finite depth. Some examples are

Void - (AX.X)
Nat - (AX.1 + X)
LiStA -(AX.1 + A x X)
BinaryTree A u(AX.A + X x X)

9



binary tree with labels only on leaves
AFancIITreeA =_p(AX.A+A xX xX+AxX xX xX)

binary/ternary tree with al nodes labelled
FancierTreeA,B =_ (AX.A + A x (B --i X))

tree with B-branching and A-labelled nodes

By convention, the definition of type O*A has a free type variable A, and ()

(0A [Tr/A].
While inductive types are usually defined in the form p(AX.r 1 + .+m), this

is not necessary. For example, FancierTree A,B is isomorphic to p(AX.A x (1 +
(B - X))). However, any inductive type not isomorphic to Void is isomorphic
to some type given in the conventional form.

Observe that if X does not occur in r, then p(AX.r) is isomorphic to r.
A number of the examples in this section are adapted from [261.

4.1 Maps to inductive types (and constants)

It is helpful to first examine the structure of inductive constants and construc-
tors. Recall that from a categorial perspective, constants are isomorphic to
constructors mapping from type 1. The patterns are most easily explained by
example.

For 1(u)=S Nat, ie_, u =_AX. + X:
0o in{u}(inl *)'
1 n u}(inr 0)
2 inju}(inr 1)
succ =_An :Nat.inju}(inr n)

For pu(u) SLiStA, i.e., u -=AX.1 + A x X
null aAA.inf u}(inl *)8
[b] Einf u)(inr(b, null [A]))
[a, b] ain{u}(inr(a, [b]))
cons AA.Aal: A x LiStA.inju}(inr al)

Forjp(u) BinaryjTree A (abbreviated BTA), i.e., u AX.A + X x X
*c =inful(inl c)

=infu}(inr(infu}(inl a), infu}(inl b)))
-a *b

'These terms are very similar to Church numerals if coproducts are encoded into the
remaining calculus in the standard way. E.g., 0 =-in{u}(AZ.Az :Z.As :Nat *- Z.z) and
1 infu)(AZ.Az; Z.As :Nat - Z.* 0).

$ Remember that A is free in u!

10



leaf - AA.Aa : A.in{u}(inl a)
makeBT - AA.At : BTA x BTA.in{u}(inr V)

As seen from these examples and from its type, in{u} is required to "pack-
age" a term into the type p(u).

The uncurried forms of constructors such as cons and makeBT are more
natural as a result of using products in the definitions of LiStA and BinaryTreeA.

4.2 Inductive functions: Maps from inductive types

When defining an inductive9 function g - R{u}[]f, it is often convenient to
use one or both of the tools used here. One method is to give a set of recurrence
equations and extract the function f. This extraction can be aided by using the
commuting diagrams of F-algebras, the second method.

The form of the recurrence equations for three common inductive types (each
of these having two constructors) is given here.

Nat: g O- f, *
g(succ n) f f2(g n)

LiStA: g(nul[A]) af *
g(cons [A] (a,l)) 95 f 2 (a,g 1)

BTA: g(leaf [A] a) - f a
g(makeBT[A](ft,h2)) a5 f2(g t,9g t2)

where f, : ri[r/X] - r, and f a Ar : u r.case(z,fl,f 2 ).

Example 2 To illustrate, we define even? : Nat --+ Bool (assume that standard
Boolean functions are defined")). In particular, we wish to satisfy the inductive
recurrences

even? 0 - true even? (succ n) a- not(even? n)

The first equivalence is the same as

even? (Ot *) - truel *

which fits the form of recurrences given at the beginning of the section. (On
following examples, we leave this sort of expansion to the reader.) The above
are equivalent to the commutativity of this diagram:

9 In this context, inductive is equivalent to iterative, rathsr than primitive recursive. As
will be shown in Section 4.3, iteration is as powerful as primitive recursion.

t'These definitions are straightforward from either Boot - 1 + 1 or Boot -A(,X.1 + 1).
See Appendix A.
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1 + Nat Id + even? 1+Boot

in{AN.1 + N} = [0t , succ] f = [truet, not]

Nat even? = R{AN.1 + N}[BoolfBool

Translating these views of the desired definition into the syntax of the cal-
culus, we first observe

4i{AN.1 + N}[Nat][Bool] f t c ease(t, Au : 1.inl *,An : Nat.inr(f n))

and then define f using f = truet and f2 = not:

f - Ax : 1 + Bool.case(z, truet, not)
even? = R{AN.1 + N}[Bool]f

Omitting the unwieldy type information from the relevant 4 above, the
following evaluation sequence demonstrates iteration using these definitions.

even? 1
--. f(I even? (inr 0))

= f(case(inr O, Au : 1.inI An : Nat.inr(even? n)))

-- f(inr(even? 0))

-- /f(inr(f (4' even? (inl *))))
f-- f(inr(f (inl ))

not true

false

Example 3 The car, or first element, of a list."

car[A](null(A]) inl *

car[A](cons(A](a, 1)) a! inr(7r,(a, car[A] 1))

"This definition provides "error checking", i.e., detection of traditionally erroneous

car(A](nul(AI), via coproducts. Alternatively, we could base a definition on the simpler
relations

car[A](ntII[A]) LM error car(A](coa(A](a, )) LM w1 (a, car(A] 1)

for some constant error : A.

12



1 +A x LiStA Id + Id x car[A ] 1 + A x (I + A)

[null[A]t , cons[A]] inl + inr o ir,

ListA car(A] 1+A

-O{AL.1 + A x L} f t E case(t, Au : 1.inl.,
Aal A x ListA.inr(7r, al, f(' 2 al)))

f -- Xzz:1+Ax(I+A).

case(z, Au: 1.inl u, Ay :A x (1 + A).inr(7rly))
car - AA.R{L, 1 + A x L}[1 + A]f

A typical evaluation sequence of an application of car is

car[Nat] [1, 2]
n_. (D (R[1 + Nat]!) (inr(1, [2])))

f (case(inr(1, [2]),
Au: 1.inl *,

Aal : A x LiStA.inr(vr al, R(1 + Nat]f(7r2 al))))

-- * f(inr(1, R[1 + Nat]f [2]))

- - inr(r(l, R[1 + Nat]f (2]))

-- inr(r, (1, 2))

-- inr1

This evaluation sequence requires a number of steps linear in the length of the
list as, in the example, R[1 + NatIf [2] S5 car(Nat] (2] must be evaluated. If
pairing were lazy, this would not be the case, and car would only take constant
time. However, a better definition of car can be given, as in Example 12, which
requires only constant-time even with eager pairing.

Many inductive destructors can be defined in a similar way. The other
destructors can be defined inductively as in Examples 6 and 7. In Section 4.4,
we will show a much simpler way to define all of these destructors.

Example 4 Test whether all leaves in a binary tree are even numbers.

leavesEven?(leaf [Nat] n) - even? n

13



leavesEven?(makeBT[Nat](s, t)) 9! and (leavesEven? s,

leavesEven? t)

Nat + BTNat × BTNatId + leavesEven? Nat + Bool x Bool

[leaf [Natl, makeBT[Nat]] [even?, and]

BTNat leavesEven? Bool

Multiple argument functions can be defined via currying as in the following
example.

Example 5 Addition of two natural numbers. The recurrences

plus 0 n - n plus (succ m) n -5 plus m (succ n)

are equivalent to

plus 0 a5 Id plus (succ rn) _ An : Nat.plus m (succ n)

The categorical equivalent of currying is exponentiation:

1 + Nat Id + Id x plus 1 + Nat - Nat

[ot, succ] [Id, ty.y o succ]

Nat , Nat --- Natplus

f =Ax : 1 + Nat --+ Nat.

case(z, Au : l.Id N' t , Ay : Nat --* Nat.An : Nat.y(succ n))
plus a R[Nat -- Nat]f

4.3 Primitive recursion

Simple induction is a valuable tool, as the previous sections shows. However,
it is also overly constrained in practice. In particular, we would like to use
the more convenient notion of primitive recursion such that, for example, the
following recurrence equations hold.
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Nat: g 0 S! f,
g(succ n) a! f 2 (n,g n)

ListA: g(nul[A]) 9! f, *
g(con (A] (,,1)) a5 f2 (a, (1, g 1))

BTA: g(leaf [A] a) t f, a
g(rnakeBT[A](ti,h2)) 25 f2((tl,g tl), (t2,g t2))

It is well-known that induction can implement primitive recursion, e.g., [20,
26]. However, such simulation is, an intuitive sense, frequently too inefficient.
This intuition has been formalized for (the Church numeral encoding of) natural
numbers by Parigot in [24]. This section shows examples of this simulation,
and how to even go beyond primitive recursion. Section 4.4 shows how this
inefficiency sometimes can be avoided in AMMO'.

Example 6 Natural number predecessor.' 2

pred 0 - 0 pred (succ n) - n

This is not in the form of an inductive definition, but is in the above primitive
recursive form. So, since inductive types can also be encoded in pure F2 , it
should not be surprising that functions such as pred and cdr may be defined
using the same pairing technique common in F2 :

predPair 0 - (0,0)

predPair (succ n) a5 (succ(7r(predPair n)),7r,(predPair n))

In particular, this definition implies

predPair n !. (n, pred n)

pred n 5 ir2(predPair n)

1 + Nat Id + predPair 1 + Nat x Nat

[01, succ] f

Nat • Nat x NatpredPair

2 We omit error checking, e.g.

pred 0 u inl * pred (succ n) L inr n

from this and following examples for simplicity.
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f _Ax:1+NatxNat.
case(z, Au: 1.(0,0),

Ann : Nat x Nat.(succ(r nn), 7r, nn))
predPair R[Nat x Natif
pred An : Nat.7r2 (predPair n)

Like its F2 counterpart, this definition requires linear time, even with al-
ternative definitions of -, since predPair n must be calculated to determine
predPair(succ n).

Example 7 The cdr of a list (such that cdr[AI(null[A]) -- null[A]), using the
same technique. We define

cdrPair[A](null[A]) a5 (null[A], null[A])

cdrPair[A](cons[A] (a, 1)) S5 (cons [A] (a, ri(cdrPair[A] 1)), 7rj(cdrPair[A] 1))

so that

cdrPair[A]l 1 - (1, cdr[A] 1)
cdr[A] 1 S5 r2 (cdrPair[A] 1)

1 +A x ListA Id + Id x cdrPair[A] 1 + A x (ListA x ListA)

[null[A]t, cons[A]] f

ListA cdrPair[A] LiStA x ListA

f Az : 1 + A x (ListA x ListA).
case(z, Au: 1.(null[A], null[A]),

Ay: A x (ListA x ListA).
(cons[A](irly, i'l(72Y)), rl(72Y)))

cdrPair AA.R[LiStA x ListA]f
cdr - Al: ListA.r 2(cdrPair[A] 1)

Example 8 The factorial of a natural number.

fact 0 e5 1 fact (succ n) a5 times n (fact n)

Again, the above definition is not expressed in the inductive form, and we
must use a pairing technique similar to before, with the relations

factPair 0 S! (0,1)

16



factPair (succ n) - (succ(7ri(factPair n)),

times (succ(wri(factPair n))) (7r2(factPair n)))

factPair n a5 (n,fact n)

fact n a 5 2(factPair n)

The general form of primitive recursion, recurring over an inductive type
p(u), resulting in a type r, is given by the following commuting diagram [20].

u p(u) Dpu}r f u(p(u) x r)
${u}(Id, pr{u}[]f)

in{u} f

AM U(U) x r .2 r

Given a function f (this corresponds to (fl, f2) from the beginning of the
section), we get

f' = (in{u} o (t{u}7ri), f)

Since the rectangle commutes,

(Id"(u),pr{u}[r]f) = R{u}[,(u) x r-f'

So,
pr{u}[T]f = 7r2 o (Rfu}[p(u) x r]f')

pr{u} : Vr.(u (p(u) x r) -- r) -- p(u) - r

Example 9 Primitive recursion for natural numbers and lists. These defini-
tions follow the tradition of separate base- and inductive-case functions fi, in-
stead of a single f.

pr{AN.1 + N} a
AA.Af 1 : A.Af 2 : (Nat x A) - A.An : Nat.

7r2(R{AN.1 + N}[Nat x A]
(Ay: 1 + Nat x A.

case(y, Au : 1.(0,fl),
Ana : Nat x A.(succ(rir na), f2 ma)))

n)

pr{AL.1 + A x L} E

17



AB.Af: B.Af 2 : A x (LiStA x B) -+ B.AI : LiStA.
ir2(R{L, 1 + A x L}[L:StA x B]

(Ay: 1 + A x (LiStA x B).
case(y, Au : 1.(O,fi),

Aalb : A x (ListA x B).(cn[]r l~r(2alb)),
f2 alb)))

l)

Using these we can define, for example,

pred pr{AN.1 + N}[Nat] 0 (Ann : Nat x Nat. ir nn), and
cdr AA.pr{AL.1 + A x L}[LiStA]

null[A] (Aall : A x (ListA x LihtA).7rl(ir2 all))

Extending this technique, we can generalize beyond the form of primitive
recursion, allowing a function to depend on i previous recursive calls, for a
given fixed i. I.e.,

g 0 _- fi . g(i - 1) _- fi

g(i + n) _ fj+i(n, g n,..., g(i + n -)

Primitive recursion in the traditional number-theoretic sense corresponds to
prNat[Nat]. However, using induction (or primitive recursion) with a higher-
order type, it is possible to define functions which are not primitive recursive in
the traditional sense. The common example of such a function is Ackermann's
function.

Example 10 Ackermann's function.

ack = Am : Nat.
R{AN.1 + N}[Nat -* Nat]

(Ay: 1 + Nat -* Nat.
case(y, succt , Af : Nat --+ Nat.An : Nat.

R{AN.1 + N}[Nat]
(Az : 1 + Nat.case(z, It, f))
(succ n))

M

4.4 Inductive destructors

Since in{u} is used to obtain the constructors for an inductive type, its inverse,
in-'{u}, gives the corresponding destructors. For example, the destructor for
Nat is pred and those for ListA are car and cdr. Now observe that some
destructors require linear time when using definitions such as those presented
so far. Comparing these definitions to Corollary 1, we see that other definitions
using in - i are available. Due to the reduction rule using in - ', these new
definitions will be more efficient.
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Example 11 Using the inverse of in{AN.1 + N}.

in-O ain-1 (in(inl,)) - inl*

in-1(succ n) = in-1(in(inr n)) - inr n

Again defining pred 0 0 0, we can define

zero? a An: Nat.case(in-ln, truet,An : Nat.false)
pred =_ An: Nat.case(in-ln, Ot,IdNat)

And, we can compare this to Corollary 1 with the following diagram (both
triangles commute) and definitions:

Id + in - '
1+ Nat 1+ (1+ Nat)

Id
in = [0t, succ] f =Id+in

Nat 1+ 1 1 Nat

f Ax: 1 + (1 + Nat).case(z,Au : 1.inl u,Ay: 1 + Nat.inr(in y))
in - ' R[1 + Nat]f

This operational equivalence empirically confirms the corollary.
Unlike the definitions for pred given in the previous section, this is constant-

time. For example, where n is a value,

pred(succ n)

--! case(in-'(in(inr n)), Ot, IdNat)

case(inr n, Ot , Idat)

-* n

Example 12 Using the inverse of in{L, 1 + A x L}.

in- 1 (null[A]) a in-1 (in(inl,)) 2-. inl,

in-(cons[A](a,l)) -in- (in(inr(a,l))) -- inr(a,l)

null? a AA.AI: ListA.case(in-'1, truet , Aai : A x LiStA.false)
car AA.A! : ListA.case(in-1,Au : 1.inl *,Aal : A x ListA.inr(7r, al))
cdr AA.Al: ListA.case(in-'l,Au : .inl ,Aal : A x ListA.inr(r, al))
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5 Co-inductive Types

The dual of inductive types, co-inductive types are defined with the V type
constructor. They represent tree structures of potentially countably infinite
depth. Some examples are

Natw =v(AN.1 + N)
natural numbers and their limit w

StreamA = v(AS.1 + A x S)
finite and infinite length streams

InfStreamA v(AS.A x S)
infinite length streams

InfTreea  = v(AX.A x Listx)
finite branching, infinite depth trees

FancierlTreeA,B - v(AX.A + A x (B - X))
B-branching, potentially infinite depth trees

For each. co-inductive type, there are terms of that type which represent
objects of infinite size. For types such as StreamA, there are also terms which
represent finite-sized objects.

The dual types p(u) and v(u) represent similar collections of objects. For
example, LiStA and StreamA both represent sequences of elements of type A.
The co-inductive type is isomorphic to its dual inductive type plus some infinite-
sized objects. Another example of this correspondence is between Nat and Natw.

5.1 Co-inductive functions and simple terms: Maps to co-
inductive types

For co-inductive types, there are two convenient definition methods for simple
terms and constructors. The first is based on dualizing inductive simple terms
and constructors. Later examples will point out a method using the categorical
idea that constants of type ar are obtained from maps of type 1 -- a.

For v(u) - Natw, i.e., u S AN.1 + N:
zeroNatw out-{u}(inl *)
succNatw An: Nat.out-1 {u}(inr n)
Note: w must be defined using the second method. See Example 20.

For v(u) - StreamA (abbreviated StrA), i.e., u = AS 1 + A x S:
emptyStream - AA.out - ' {u}(inl *)
[a, b] - out-' {u}(inr(a, out-' {u}(inr(b, emp*yStream[A]))))
consStream - AA.Aas : A x SIreamA.out- f{u}(inr as)

For v(u) = InfStreamA (abbreviated IStrA), i.e., u - AX.A x Lisix
consIStream - AA.out - s {U}
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Due to duality, maps to co-inductive types are similar to maps from inductive
types, in that such functions involve the induction operator and commuting
diagrams.

However, the general recurrence patterns of co-induction are not as con-
venient as those of induction as shown in Section 4.2. To define a function
g = G[X]f : X -+ (,AX.r), the recurrence equations of co-induction for the
above three types are

Natw: g z -5 case(f x, zeroNaiwt , Ay : X.succNa w(g y))
StrA: g z 5 case(f z, emptyStream[Alt,

Aaz : A x X.consSiream[A(7r, ax,g( r2 ax))
IStrA: g z 25 consIStream[A](iri(f z),g(Tx2(f z)))

Example 13 The empty stream (alternate method). Using the idea that the
constant is essentially a map of type 1 -+ StreamA, we use the general pattern
of co-induction on streams.

I + A x 1 Id + Id x emptyStream[A]t I+ A x StrA

f = inl out

emptyStream[A]t SIrA

D{IAS.A x S}[1][StrA] f t a case(t, Au :ini *,
Aau : A x 1.inr(ir, an, f(ir 2 au)))

emptyStream =_ AA.G{AS.1 + A x S}[1](Au : LinI u)*

Evaluation of out(emptyStream[A]):

out(empyStream [A])
- 6 $ (Gf1](Au : 1.inl u)) ((Au 1.inl u) ,)

= case((Au : .inl u)*,

Au : L.inl *,

Aau : A x 1.inr((7r an, G[1](Au :1inI u)(7r2 an))))

_-., inl*
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Example 14 Similarly, we can define consIStream using this alternate method,
and compare the result to Corollary 1. It fits into the above recurrence pattern
as

consiStream[A](a, s) 95 consIstream[A](a, conslStream[A](out s))

since consIStream[A] a- out - '.

A x (A x IStrA) Id x conslStream[A] A x

Id x out out

A x IS&rA conslStream[A] IStrA

4D{AS.A x S}[A x IStrA][IStrA] f t- (irlt,f(7r2t))

f =- Aas : A x IStrA.(7r, as,out(r 2 as))
conslStream - AA.G[A x IStrA]f

Unfortunately, destructing a term built using this definition is computation-
ally expensive. In essense, destructing a stream built with this conslStream
propagates the out found in the above definition of f. E.g., given any is
IStream Nat,

tailIStr[A](conslStream[A](1, is))

-,r 2 (out(conslStream [A] (1, is)))

7r2(0 (G[A x ISr Al) (M(1, is)))
7r2((ir,(f(1, is)), G[A x ISrA]f(((1, is)))))

... G[A x IStrAJf(out is)

The last term in this reduction sequence is observationally equivalent to is,
but computing the headiStr or tailiSir of this stream requires a longer re-
duction sequence than does destructing is. Using the previous definition of
conslStream =- out - ' avoids this problem since

i 2(taillStr[A](out- 1 (1, is))) - is.

So, just as the inverse of in{u} efficiently defines an inductive type's destruc-
tors, the inverse of out{u} produces efficient co-inductive constructors.
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Example 15 The infinite stream of natural numbers from a given one, e.g.,

natsFrom 2 S, [2,3,4 .... From the relation

natsFrom n consISt ream[Nai](n, natsFrom(succ n))

we can obtain the equivalent

out (natsFrom n) S5 (n, natsFrom (succ n))

which is the natural counterpart for the commuting diagram

Nat x Nat Id x natsFrom Nat x ISIrNat

(Id, succ) out

Nat natsFrom ' IStrNat

natsFrom =_ G[Nat](Arr: Naf.(n, succ n))

Example 16 The infinite stream of a constant c: A. The recurrence

constlS[A]c 25 consIStream[A](c, constIS[A]c)

leads to the definition

constIS M AA.Ac: A.G{AS.A x S}[1](Au: 1.(c,u)) *

Example 17 The infinite stream of factorial numbers. We first define

factsHelp (m, n) - consIStream[Nat](n,factsHeip (times m n, succ n))

which encapsulates the incremental computation of the factorials. To define the
stream of all factorials, we must seed the computation with some numbers, in
this case the first factorial number and the first number to multiply by:

facts - facisHetp (1, 1)

Nat x (Nat x Nat) Id x factselp Nat x IStrNat

f out

Nat x Nat f ISIrNat
factsHelp
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f -Ann: Nat x Nat.
(7rt nn, (times (ix nn) (7r2 nn), succ(7r 2 nn)))

factsHelp G[Nat x Nat]f
facts -factsHlp (1, 1)

Example 18 The infinite stream of Fibonacci numbers

fibsHelp (m, n)) a5 conslStream[Nat](m, fibsHelp (n, plus m n))

f a Ann : Nat x Nat.(ir, nn, (7r2 nn,plus (7r, nn) (7r2 nn)))
fibsHelp E G[Nat x Nat]f
fibs := fibsHelp (0, 1)

Example 19 Appending two streams. The following definition is based on the
relations

appStr[A](e,e) 2 e

appStr[A](e, consStr[A](a,s)) !-- consStr[A(a, appStr[A(e,s))

appStr[A](consStr[A](a,s),t) :- consStr[A](a, appStr[A](s,t))

using the abbreviation e - emptyStream[A].
Using destructors defined in Section 5.3 and boolean functions defined in

Appendix A,

f Ass : StrA x SrA.
ite (emptyStream?[A](irj ss))

(ite (emptyStream?[A](2 s))
(inl *,
inr(headStrA](r2 ss), (inl *, tailStr[A](7 2 ss))))

inr(headStr[A](irj ss), (tailStr[A](iri ss), 72 ss)))
appStr a AA.G[StrA x SirA]f

Example 20 The term w - .Naw. The desired equality w a! succNatw w is
equivalent to out (wt *) inr(wt *). So, we have w - G[1](Au : 1.inr u) *.

Note than an alternate definition for zeroNaw is the very similar G[1](Au
Linl u) *.

Since Naiw is isomorphic to Streaml, we can adapt Example 19 to define
(non-curried) addition on Natw:

f -Ann : Natw x Natw.
ite (zeroNatw?(ij nn))

(ite (zeroNatw?(Ir2 nn))
(inl *, inr(inl *, predNatw(vr2 nn)))

inr(predNatw(ir, nn), 7r2 nn))

plusNatw G(Natw x Naiwf]
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5.2 Primitive co-recursion

Dualizing the diagram for primitive recursion, we obtain the following commut-
ing diagram [20].

'+{u} inl

s ( u} [Id,pcor{u}[r]f]

f f, out{u}

[Id, pcor{u}[Tr]f]r inr - V(U) - r T inl "V(u)

So, given a function f, we find f' by

f = [({u} inl) o out{u}, f]

Then, since the rectangle commutes,

[Id, pcor {u}[ rlf] = G{ u}[v(u) + r]f'

So,
pcor{u}[i]f = inr o G{u}[v(u) + r]f'

pcor{u} : V.(r -u ( (u) + -r)) --. r -- v(u)

Recurrence equations for a primitive co-recursive function g would be based
on the equation

g x a_ {} (Ay : v(u) + X.case(y, Id'("), g)) (f x)

for each constructor u.

Example 21 Translating the definition of pcor into AMMLS syntax leads to,
for example,

pcor{Natw} AA.Af : A - 1 + (Natw + A).Ax : A.
inr(G{ Natw}(Naiw + A]

(Ay : Natw + A.
case(y, An: Natw.

case(out{AN.1 + N}n,
Au : Linl *,
Am: Natw.inr(inl in)),

2))
z)

25



An example of pcor is the zip function, which maps a pair of streams into a
stream of pairs.

ziplS E AA.pcor{AS.A X S}[ISA x ISA]
(Ass: ISA X ISA.

((headlStr[A](7r ss), headlStr[A](7r2 ss))
inr(taiUIStr[A](r1 ss), taiUlStr[A](ir2 SS)) ))

Notice the similarity in structure to the definitions of appStr and plusNatw
which could also be defined via primitive co-recursion.

5.3 Maps from co-inductive types

The use of out{u} is characteristic of such functions from co-inductive types, as
it "unrolls" or "forces" an object one step, the only way to access the information
packaged by G{u}. The simplest examples of its use are destructors and base-
case tests.

Example 22 Test for the empty stream.

emptyStream? = AA.As : SrA.case(out s, true t , Aas : A x StrA.false)

Example 23 The head and tail destructors for streams.

headStr AA.As : S&rA.case(out s, Au : 1.inl *,
Aas : A x S&tA.inr(lrl as))

tailSir AA.As : StrA.case(out s, Au : 1.inl *,
Aas : A x StrA.inr(7r2 as))

headlSir AA.As : ISrA.11(out s)
tailISir AA.As : IStrA.r2(out s)

Example 24 Maps from Natw.

zeroNatw? = An Naiw.case(out n, truet , Am : Nat w.false)
predNatw An: Natw.case(out n, zerot, Am : Natw.m)

As desired, predNatw w - w.

The function w? cannot be defined. Since out - ' provides the only way to
"unroll" and examine an object of type Natw, the only way to define such as test
is by the above destructors. Thus, such a function would have to decrement its
argument until zeroNatw was obtained, so it cannot be written in the calculus.
Similarly, any such test of infiniteness on any co-inductive type is impossible.

Example 25 The function neztnode returns the next node of the tree paired
with a new tree with which to continue the search.
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nezinode = AA.At :InfTreeA.(r(ott),
makelTA(vI(out(car[A](r 2 (out t)))),

append [InfTree A]
(cdr[A](7r2(out t)),
ir2 (out(car[A](ir2 (out t)))))))

where makelTA = out - I is the constructor for InfTreCA.

Repeated uses of neztnode results in breadth-first search of a finitely branch-
ing infinite tree:

search[A]t - consiS[A] (r 1 (neztnode[air), search [A]( nextnode [A]t))

search = AA.G{IAS.A X S}[1TA](nextnode[A])

Thus, search[Alt is an infinite stream of the nodes of t in breadth-first order.

6 Summary of Related Work
Hagino [8, 9] uses a generalization of algebras called di-algebras. This allows
him not to assume any base types or the constructors + and x. Instead, all
types are defined with a J or r, constructor and a possibly empty list of functors
corresponding to the ri's in p(AX.rl + ... + r.).

Coquand and Paulin [5], and Pfenning and Paulin-Mohring [25] are similar
in that they also do not assume any base types or the constructors + and x.
However, they do not work in a category theoretic framework and they use
inductive, but not co-inductive types.

Mendler [20] explains primitive recursion and its dual in terms of category
theory, using a generalization of algebras. Using these as primitives instead of
(co-)induction, a calculus using the ideas outlined would allow constant-time
encodings of our inverses.

Pierce, Dietzen, and Michaylov [26] present an example-based tutorial on
programming in the F hierarchy of calculi, using iterators for inductive types.

Both Leivant [12] and Parigot [22, 23, 24] view programs with inductive
data types as being derived from proofs. Leivant formalizes the extraction of
programs from several families of calculi, giving numerous examples. Instead
of extending a calculus to improve efficiency, Parigot examines alternate en-
codings of Nat in F2 (optionally extended with fix) which allow constant-time
destructors.

Michaylov and Pfenning [21] describe a process to compile F2 terms to F
extended with constants for inductive constructors and recursors. It translates,
for example, the common pair-based pred function similar to Example 6 to a
constant-time function using recursors. A more systematic approach to defining
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the extension.q in thei targ..;t calculu.p could be obtained from our ;! types and
related terms.

Leivant [13] looks at Church numerals in a predicative version of F 2, describ-
ing precisely what computations can be defined on that type. When adding
inductive types to this stratified calculus, he shows that the type pX.r is at the
same level as r. In AMMMY, this means than p(AX.r) is a type and not a type
scheme. He also proves that the addition of inductive types "does not result in
new functions being representable, but it does allow new algorithms'.

Burstall [4] extends ML with an inductive case statement, and relates pro-
gramming with inductive types to specification with abstract data types, an-
other area which uses initial algebras and sometimes final co-algebras. Hagino
[10] extends ML with a "codatatype" declaration and a "merge" statement
which corresponds to G. Wraith (27] uses a rougher equivalent system. Both
notations, however, assume definitions of co-inductive types are of the form
(AX.,rl x ... x -r), which makes use of types such as StreaMA inconvenient.

Crole [6] gives a model for an inductive calculus.
With the assumption that C is the category of CPO's, Meijer, Fokkinga, and

Paterson [15, 71 eliminate the distinction between least and greatest fixed points.
Thus, in - 1 {u} = out{u}. This allows additional elegant recursion schemes, but
introduces non-strictness.

7 Conclusions

Algebraic datatypes are a valuable abstraction for programming, as terms are
easily defined directly from their specifications, i.e., recurrence equations or sim-
ple category theory diagrams. Using the morphisms in - 1 and out- ' provides
straightforward means of obtaining constant-time inductive destructors and co-
inductive constructors, which significantly improves efficiency as compared to
similar calculi. It has also been shown that conceptually infinite objects can
be used with ease. However, when termination is guaranteed, the usefulness
of co-inductive datatypes is significantly restricted, as many common functions
cannot be defined.

8 Comments and Future Research

The calculus as presented is rather verbose from explicit types. Type inference
should be explored to eliminate or reduce the amount of explicit type infor-
mation necessary. A ML-like type declaration facility together with pattern
matching, as in [4, 27, 10] would also be useful, but work still needs to be done
for co-inductive types.

A formal model of the calculus would involve formalizing the points raised
in Section 2, in particular, detailing the structure of the "category of all types".
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It would be interesting to base the calculus on the full AML calculus, rein-
troducing higher kinds. In that case, it is more difficult to enforce the positivity
constraint on (co-)inductive types chat ensures that t is well-defined. Alterna-
tively, dropping the positivity constraint altogether introduces non-termination
and requires redefinition of the evaluation of R and G, since 0 is not always
definable.[14]

The syntax of the calculus creates one unfortunate semantic problem. It
is not Church-Rosser when using the standard q rule and an inductive q-like
rule corresponding to Theorem 2, R{u}[p(u)]in{u} t 4-. t. In this case, the
diamond property does not hold for Ax : p(u).R{u}[p(u)]in{u} t. A simple
fix is to only allow "fully applied" forms such as R{u}[r]f t to be terms.
The problem does not seem to arise with the alternate inductive r/-like rule,
R{u}[p(u)]in{u} - U ).

More could be learned about (co-)inductive terms in F2 by translating our
examples, for example, as shown in Appendix B. Also, we would like to examine
more closely the duality of types p(u) and v(u). Furthermore, our familiarity
of co-inductive constructs is still not as developed as our understanding of pro-
gramming with inductive types. More examples could come from extracting
co-inductive programs from proofs.
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A Other functions

The most direct definition of Bool, with some typical functions:

Bool 1 1 + 1
true a inl *
and Abb : Bool x Bool.case(r, bb,r 2 bb,fatse)
ite Ab: Bool.Aaa : A x A.case(b, Au : 1.rl aa, Au : 1.7r2 aa)

An alternative definition, allowing use of the iterator R to define ite:

Bool = p(AX.1 + 1)
true a in(inl *)
and Abb : Bool x Bool.case(ri(in-'bb),lr2 (in-1 bb),false)
ite Ab: Boot.R[A x A --+ A](Ax : 1 + 1.case(z, Au : 1.Aaa : A x A.wr aa,

Au: 1.Aaa : A x A. 2 aa))

Some other basic functions on natural numbers; note the similarity of monus
and plus (Exercise 5):
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eq? - R[Nat --+ Bool](Az :1 + Nat --. Bool.

case(z, zero?t, Ay : Nat -* Bool.An : Nat.y(pred m))
leq? R[Nat --* Bool]

(Az: 1 + Nat -- Bool.
case(z, Au : 1.An : Nat.true,

Ay: Nat -* Bool.An : Nat.
ite (zero? n) (false,y(pred n))))

monusHelp R[Nat -- Nat]
(Az: 1 + Nat --+ Nat.

case(z, Au : L.IdNt,
Ay : Nat -o Nat.An: Nat.y(pred m))

monus An : Nat.Am: Nat.monusHelp m n

divrem R[Nat -- (Nat x Nat)]
(Az : 1 + Nat --o (Nat x Nat).

case(z, Au : 1.Am : Nat.(O, 0),
Ay: Nat --+ (Nat x Nat).An : Nat.

ite (eq? (ir2(y n)) (pred n))
(succ(ii(y n)), 0)
(r, (y n), succ(i 2 (yn))))

div- Am: Nat.An: Nat.vj(divrem m n)
rem An : Nat.Am : Nat.7r2(divrem m n)

diff prNat[Nat -- Nat] Idotea

(Ax: Nat x (Nat --* Nat).An: Nat.
ite (zero? n) (SUCC(irIZ), (7r2X) (pred n)))

Filtering and accumulating, on a list:

filter Ap: A --- Bool.
R(ListAI(Az : 1 + A x LiStA.

case(z, Au : linI *,
Aal : A x ListA.ite (p(ri al)) (al, 72 al)))

accum R[((A x B) -- B) -. B -- B]
(Az: 1 + A x (((A x B) -- B) -* B -- B).

case(z, Au : 1.Af : (A x B) -- B.IdB,

Ay: A x (((A x B)--* B) -- B -* B).
Af : (A x B) -* B.Ab: B.

(72Y) f (f(<rjy,b))))

The equivalent functions on streams are not total and, therefore, not definable
in the calculus.

Merging sorted infinite streams, allowing duplicates:
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mergeIS =_AA.G[ISA X ISA]
(Ass: ISA X( ISA.

ite (leq? (headlStr[AI(7ri ss)) (headIStr[A](r 2 ss)))

The type Unit =_ (AX.X) is the dual to Void and thus isomorphic to 1.
Adapting examples from the isomorphic type InfStreamj,

unit EG[1lII *

IdUn"s -_ out-' -_ G[Unitjout 25 out

Many more inductive type examples can be adapted from [3].

B T1ranslation to F2

Since F2 has figured prominently in the work on (co-)inductive types, we give a
translation __ from A MMOI to F2 . Type and term variables occurring only on
the right-hand side of the equations are assumed to be fresh.

1 a VX.X -X

p(AX.Tr) VX.(z - X) -* X

V(AX.r) VY.(VX.(X - X - Y) -~ Y

VX.Or a VX.O,

* AX.Ax: X.z

___ E gj.I: LAr ~ ) (if t : 9 1 X 0' 2)

Wina AX.AI: oa - X.Ar : 0'2 -~X.I t (if t a26')

case(t, tl,t 2) E [-jtl t2 (if ti : ui -a

AXAt AXI
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il t2  =- t t2
t[T'.. - zJ

in{u} Ah : u p(u).AY.Af : u Y -- Y.

f({u}[p(u)]M (R{u}[Y]f) h)

in-{u} At: u (u p(u)).R{u}[u p(u)](,1 {u}[u ,(u))]p(u)] in{u} t)

R{u}[-] At :,(u____).t[r
out{u} At: v(u).t[u v(u)](AY.Af : Y -- u Y.Ax : Y.

,{u}[Y][,(u)] (G{u}[YJJ) (f z))

out-1{u} a At: u ,(u).G{u}[u v(u)](¢{u}[v(u)][u v(u)] out{u} t)

G{u}[r]f Ax : r.AZ.Ah : (VW.(W -. u W) -- W --+ Z.hLf x

This translation maps AMMAU types into F2 types which are closely related

to the standard F2 encodings of these types. For example,

Nat a VZ.((VX.X - X) -* Z) - (Z -e Z) -* Z

which is isomorphic to VZ.Z --+ (Z -. Z) -. Z, the normal definition.
Naturally, using the definition of pred in Example 6, pred is similar to the

standard F2 definition. However, translating Example 11 (and simplifying with
isomorphisms for readability) results in an alternative:

pred aF. An: at.(nVZ.Z --+ (at -. Z) -Z

(AZ.Az : Z.As: Nat - Z.z)
(Ay: (VZ.Z --+ (Nat - Z) - Z).

(AZ.Az: Z.As: Nat --- Z.s(y[VZ.Z - (Za__. - Z) - Z] Q_ succ))))
0at Id Nt

However, even using this definition, it requires linear-time to evaluate pred n,
since F 2 does not have an one-step equivalent of in-'(in t) -- t.
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